下面介绍前向后向算法的参数学习过程,在学习的过程中,不断更新 HMM 的参数,从而使得 P(O | λ) 最大。我们假设初始的 HMM 参数为 λ={ π, A, B },首先计算前向变量 α 和后向变量 β,再根据刚刚介绍的公式计算期望 ξ 和 ζ,最后,根据下面的3个重估计公式更新 HMM 参数。
如果我们定义当前的 HMM 模型为 λ={ π,A,B },那么可以利用该模型计算上面三个式子的右端;我们再定义重新估计的 HMM 模型为,那么上面三个式子的左端就是重估的 HMM 模型参数。Baum 及他的同事在70年代证明了,因此如果我们迭代地计算上面三个式子,由此不断地重新估计 HMM 的参数,那么在多次迭代后可以得到 HMM 模型的一个最大似然估计。不过需要注意的是,前向后向算法所得的这个最大似然估计是一个局部最优解。
参考资料:
1.
2.
3.
4. Lawrence R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77 (2), p. 257–286, February 1989.
5. L. R. Rabiner and B. H. Juang, “An introduction to HMMs,” IEEE ASSP Mag., vol. 3, no. 1, pp. 4-16, 1986.
6. ~gerjanos/HMM/node2.html
7.
8. 隐马尔可夫模型简介,刘群
顶 1 踩 0
我的同类文章
猜你在找
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
个人资料
likelet
积分:1640
文章搜索
文章分类
文章存档
阅读排行