JS技术

数据结构实验3(图的DFS和BFS实现) - GKHacks Blog - 博客频道 - CSDN.NET GKHack

字号+ 作者:H5之家 来源:H5之家 2015-12-14 16:06 我要评论( )

Android应用中菜单(Menu)的位置显示问题

实现邻接矩阵和邻接表两种不同存储结构上实现图的基本运算, 在MGraph类中扩充增加DFS()和BFS()函数.

包含的运算: 插入一条边, 删除一条边, 查询边是否存在, 图的深度优先搜索和广度优先搜索.

广度优先搜索利用队列作为辅助的数据结构, 元素类型是树的结点. 

实现代码:

#include "iostream" #include "cstdio" #include "cstring" #include "algorithm" #include "queue" #include "stack" #include "cmath" #include "utility" #include "map" #include "set" #include "vector" #include "list" #include "string" using namespace std; typedef long long ll; const int MOD = 1e9 + 7; const int INF = 0x3f3f3f3f; enum ResultCode { Underflow, Duplicate, Failure, Success, NotPresent }; template <class T> class SeqQueue { public: SeqQueue(int mSize); ~SeqQueue() { delete []q; } bool IsEmpty() const { return front == rear; } // front与rear相等时循环队列为空 bool IsFull() const { return (rear + 1) % maxSize == front; } // front与(rear + 1) % maxSize相等时循环队列满 bool Front(T &x) const; bool EnQueue(T x); bool DeQueue(); void Clear() { front = rear = 0; } /* data */ private: int front, rear, maxSize; // 队头元素 队尾元素 数组最大长度 T *q; }; template <class T> SeqQueue<T>::SeqQueue(int mSize) { maxSize = mSize; q = new T[maxSize]; front = rear = 0; } template <class T> bool SeqQueue<T>::Front(T &x) const { if(IsEmpty()) { // 空队列处理 cout << "SeqQueue is empty" << endl; return false; } x = q[(front + 1) % maxSize]; return true; } template <class T> bool SeqQueue<T>::EnQueue(T x) { if(IsFull()) { // 溢出处理 cout << "SeqQueue is full" << endl; return false; } q[(rear = (rear + 1) % maxSize)] = x; return true; } template <class T> bool SeqQueue<T>::DeQueue() { if(IsEmpty()) { // 空队列处理 cout << "SeqQueue is empty" << endl; return false; } front = (front + 1) % maxSize; return true; } template <class T> class Graph { public: virtual ~Graph() {}; virtual ResultCode Insert(int u, int v, T &w) = 0; virtual ResultCode Remove(int u, int v) = 0; virtual bool Exist(int u, int v) const = 0; /* data */ }; template <class T> class MGraph: public Graph<T> { public: MGraph(int mSize, const T& noedg); ~MGraph(); ResultCode Insert(int u, int v, T &w); ResultCode Remove(int u, int v); bool Exist(int u, int v) const; int Vertices() const { return n; } void Output(); void DFS(); void BFS(); protected: T **a; T noEdge; int n, e; void DFS(int v, bool *vis); void BFS(int v, bool *vis); /* data */ }; template <class T> void MGraph<T>::Output() { for(int i = 0; i < n; ++i) { for(int j = 0; j < n; ++j) if(a[i][j] == noEdge) cout << "NE\t"; else cout << a[i][j] << "\t"; cout << endl; } cout << endl << endl << endl; } template <class T> MGraph<T>::MGraph(int mSize, const T &noedg) { n = mSize, e = 0, noEdge = noedg; a = new T *[n]; for(int i = 0; i < n; ++i) { a[i] = new T[n]; for(int j = 0; j < n; ++j) a[i][j] = noEdge; a[i][i] = 0; } } template <class T> MGraph<T>::~MGraph() { for(int i = 0; i < n; ++i) delete []a[i]; delete []a; } template <class T> bool MGraph<T>::Exist(int u, int v) const { if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v || a[u][v] == noEdge) return false; return true; } template <class T> ResultCode MGraph<T>::Insert(int u, int v, T &w) { if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure; if(a[u][v] != noEdge) return Duplicate; a[u][v] = w; e++; return Success; } template <class T> ResultCode MGraph<T>::Remove(int u, int v) { if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure; if(a[u][v] == noEdge) return NotPresent; a[u][v] = noEdge; e--; return Success; } template <class T> void MGraph<T>::DFS() { bool *vis = new bool[n]; memset(vis, false, n); for(int i = 0; i < n; ++i) if(!vis[i]) DFS(i, vis); delete []vis; } template <class T> void MGraph<T>::DFS(int v, bool *vis) { vis[v] = true; cout << ' ' << v; for(int i = 0; i < n; ++i) if(a[v][i] != noEdge && a[v][i] != 0 && !vis[i]) DFS(i, vis); } template <class T> void MGraph<T>::BFS() { bool *vis = new bool[n]; memset(vis, false, n); for(int i = 0; i < n; ++i) if(!vis[i]) BFS(i, vis); delete []vis; } template <class T> void MGraph<T>::BFS(int v, bool *vis) { SeqQueue<int> q(n); vis[v] = true; cout << ' ' << v; q.EnQueue(v); while(!q.IsEmpty()) { q.Front(v); q.DeQueue(); for(int i = 0; i < n; ++i) if(a[v][i] != noEdge && a[v][i] != 0 && !vis[i]) { vis[i] = true; cout << ' ' << i; q.EnQueue(i); } } } template <class T> struct ENode { ENode() { nxtArc = NULL; } ENode(int vertex, T weight, ENode *nxt) { adjVex = vertex; w = weight; nxtArc = nxt; } int adjVex; T w; ENode *nxtArc; /* data */ }; template <class T> class LGraph: public Graph<T> { public: LGraph(int mSize); ~LGraph(); ResultCode Insert(int u, int v, T &w); ResultCode Remove(int u, int v); bool Exist(int u, int v) const; int Vertices() const { return n; } void Output(); protected: ENode<T> **a; int n, e; /* data */ }; template <class T> void LGraph<T>::Output() { ENode<T> *q; for(int i = 0; i < n; ++i) { q = a[i]; while(q) { cout << '(' << i << ' ' << q -> adjVex << ' ' << q -> w << ')'; q = q -> nxtArc; } cout << endl; } cout << endl << endl; } template <class T> LGraph<T>::LGraph(int mSize) { n = mSize; e = 0; a = new ENode<T>*[n]; for(int i = 0; i < n; ++i) a[i] = NULL; } template <class T> LGraph<T>::~LGraph() { ENode<T> *p, *q; for(int i = 0; i < n; ++i) { p = a[i]; q = p; while(p) { p = p -> nxtArc; delete q; q = p; } } delete []a; } template <class T> bool LGraph<T>::Exist(int u, int v) const { if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return false; ENode<T> *p = a[u]; while(p && p -> adjVex != v) p = p -> nxtArc; if(!p) return false; return true; } template <class T> ResultCode LGraph<T>::Insert(int u, int v, T &w) { if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure; if(Exist(u, v)) return Duplicate; ENode<T> *p = new ENode<T>(v, w, a[u]); a[u] = p; e++; return Success; } template <class T> ResultCode LGraph<T>::Remove(int u, int v) { if(u < 0 || v < 0 || u > n - 1 || v > n - 1 || u == v) return Failure; ENode<T> *p = a[u], *q = NULL; while(p && p -> adjVex != v) { q = p; p = p -> nxtArc; } if(!p) return NotPresent; if(q) q -> nxtArc = p -> nxtArc; else a[u] = p -> nxtArc; delete p; e--; return Success; } int main(int argc, char const *argv[]) { int n, g; cout << "请输入元素的个数: "; cin >> n; MGraph<int> A(n, INF); LGraph<int> B(n); cout << "请输入边的条数: "; cin >> g; int *a = new int[g]; int *b = new int[g]; int *w = new int[g]; for(int i = 0; i < g; ++i) { cout << "请输入边及权值: "; cin>> a[i] >> b[i] >> w[i]; A.Insert(a[i], b[i], w[i]); B.Insert(a[i], b[i], w[i]); } cout << "该图的深度优先遍历为:" << endl; A.DFS(); cout << endl; cout << "该图的广度优先遍历为:" << endl; A.BFS(); cout << endl; cout << "请输入要搜索的边: "; int c, d; cin >> c >> d; if(A.Exist(c, d)) cout << "邻接矩阵中该边存在!" << endl; else cout << "邻接矩阵中该边不存在!" << endl; if(B.Exist(c, d)) cout << "邻接表中该边存在!" << endl; else cout << "邻接表中该边不存在!" << endl; cout << "请输入要删除的边: "; int e, f; cin>> e >> f; if(A.Remove(e, f) == Success) cout << "邻接矩阵中删除该边成功!" << endl; else if(A.Remove(e, f) == NotPresent) cout<<"邻接矩阵中该边不存在!"<<endl; else cout<<"输入错误!"<<endl; if(B.Remove(e, f) == Success) cout << "邻接表中删除该边成功!" << endl; else if(B.Remove(e, f) == NotPresent) cout << "邻接表中该边不存在!" << endl; else cout << "邻接表中输入错误!" << endl; cout << "删除该边后该图的深度优先遍历为:" << endl; A.DFS(); cout << endl; cout << "删除该边后该图的广度优先遍历为:" << endl; A.BFS(); cout << endl; return 0; }

  • 上一篇数据结构实验2(二叉链表实现二叉树的基本运算)
  • 下一篇数据结构实验3(飞机最少环城次数问题)
  • 顶 1 踩 0

    我的同类文章

    猜你在找

    查看评论

    * 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

     

    1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

    相关文章
    • Arduino 温湿度传感器DHT11模块实验 - 比特字节-只为技术 - 博客频道 - CSDN.NET 比特字节-只

      Arduino 温湿度传感器DHT11模块实验 - 比特字节-只为技术 - 博客频道

      2015-12-15 08:54

    • 数据结构实验3(飞机最少环城次数问题) - GKHacks Blog - 博客频道 - CSDN.NET GKHacks

      数据结构实验3(飞机最少环城次数问题) - GKHacks Blog - 博客频道 -

      2015-12-14 16:18

    • 数据结构实验2(二叉链表实现二叉树的基本运算) - GKHacks Blog - 博客频道 - CSDN.NET GKH

      数据结构实验2(二叉链表实现二叉树的基本运算) - GKHacks Blog - 博

      2015-12-14 16:13

    • 实验D----两个数的互素判定 - ITSophia的专栏 - 博客频道 - CSDN.NET ITSophia的专栏

      实验D----两个数的互素判定 - ITSophia的专栏 - 博客频道 - CSDN.NET

      2015-12-14 15:39

    网友点评
    t