一. 获取THREE.js
three.js的代码托管在github上面,https://github.com/mrdoob/three.js/
我们可以用git来获取代码,闲麻烦的话也可以直接下载zip文件。
二. 目录结构拿到代码后先看下three.js的目录结构
|-build
|-custom
|-Three.js
|-examples
|-gui
|-src
|-cameras
|-core
|-extras
|-lights
|-materials
|-objects
|-renderers
|-scenes
|-textures
|-Three.js
|-utils
|-compiler
|-exporters
|-build.bat
|-build.sh
|-build.xml
|-build_all.bat
|-build_all.sh
三. example分析 - webgl trackballcamera earth
examples目录下有该示例
在这个example里我们能够看到:
这里不会逐行逐行代码的分析,而是对于每个特性挑出代码来讲。
一个three.js应用的基本结构。
不管用什么写3d应用,c++的ogre,flash的pv3d,js的o3d,又或者使用场景编辑器,一个3d场景所需要的最基本的东西都是一样的,一个主要的camera,一个主要的scene。
当然一般的场景里都会有物体,有灯光,每个物体都有材质。我们在three.js中可以一个个手动创建,也可以直接加载一个记录场景数据的json文件。
创建一个scene
scene = new THREE.Scene();
创建一个摄像机
camera = new THREE.PerspectiveCamera( 25, width / height, 50, 1e7 );
camera.position.z = radius * 7;
这段代码确定了一个摄像机的视锥,四个参数分别是摄像机的视锥角度,视口的长宽比,摄像机的近切面(Front Clipping Plane)和远切面(Back Clipping Plane),为什么要四个参数?其实摄像机本质上就是一个投影矩阵,而建立一个透视投影的矩阵(还有正交投影)需要这四个参数,形象点可以看下图
从图中可以看到,要唯一确定一个透视的视锥(Viewing Frustum)至少需要上述的四个参数。
调整摄像机的位置和朝向
创建一个摄像机还需要摆好这个摄像机的位置和朝向,three.js里可以用camera.lookAt函数来设置摄像机的朝向,用camera.position设置摄像机的位置
这个demo里由于创建了一个实现轨迹球控制效果的TrackballControls,因此camera的变换都被封装在这里面了。
如果看lookAt的代码,其实这些操作都是矩阵的操作,摄像机本质上和一个场景中的实体无异,都是使用变换矩阵来做变换。
下面要为场景中添加一些东西了
我们可以在演示中大概看到这个场景中有一个地球,一个月球,周围的太空,还有一个一直照着地球模拟太阳的光照,如果看得仔细点,我们还会发现其实地球外面还包着一层大气层。
下面要一一在场景中添加进入这些东西
1. 首先是地球
在WebGL里创建一个object,我们需要的最基本的数据就是这个object的顶点位置,当然,如果需要这个物体能够入眼的话,我们还需要为它编写shader,需要传入顶点的法线数据,需要传入texcoord来完成纹理映射。
说到shader,我们先看下WebGL中渲染一个物体的基本顺序:
程序会先载入,编译和绑定shader代码,每个渲染批次,显卡都会将这些顶点数据传入流水线,在流水线中会通过Vertex Shader进行顶点位置的变换,光栅化,Fragment Shader中对每个像素计算颜色,最后深度测试等等后输出到屏幕。
THREE.js中将物体顶点数据的管理封装成为geometry接口,将shader和shader中参数的管理封装成为material接口,每次编译加载绑定shader,传入顶点数据都会在WebGLRenderer中统一处理。
var materialNormalMap = new THREE.ShaderMaterial({
fragmentShader: shader.fragmentShader,
vertexShader: shader.vertexShader,
uniforms: uniforms,
lights: true
});
这里便是创建了一个材质,传入了fragmentShader和vertexShader的代码,uniforms是这两个shader里的参数。
这两个都是可以拿来主义的
var shader = THREE.ShaderUtils.lib[ "normal" ],
uniforms = THREE.UniformsUtils.clone( shader.uniforms );
uniforms[ "tNormal" ].texture = normalTexture;
uniforms[ "uNormalScale" ].value = 0.85;
uniforms[ "tDiffuse" ].texture = planetTexture;
uniforms[ "tSpecular" ].texture = specularTexture;
uniforms[ "enableAO" ].value = false;
uniforms[ "enableDiffuse" ].value = true;
uniforms[ "enableSpecular" ].value = true;
uniforms[ "uDiffuseColor" ].value.setHex( 0xffffff );
uniforms[ "uSpecularColor" ].value.setHex( 0x333333 );
uniforms[ "uAmbientColor" ].value.setHex( 0x000000 );
uniforms[ "uShininess" ].value = 15;
于是这里创建了一个法线贴图的材质(关于法线贴图的原理,这里先不多讲),并且设置好了它的各个参数,其中tNnormal是法线纹理,tDiffuse是漫反射纹理,tSpecular是高光纹理,
tDiffuse,tSpecular和tNormal
uDiffuseColor, uSpecularColor, uAmbientColor, uShininess这四个是Phong模型光照的参数,
uDiffuseColor:漫反射颜色
uSpecularColor:高光颜色
uAmbientColor:环境光颜色
uShininess:物体表面光滑度
下面这段便是创建这个地球本身了,并且加入到场景里面