Each step:
1. Generate an independent set of K-dimensionallatent variables Zt (Stochasitc随机产生)
2. 函数Fh联系了相邻潜变量的依赖关系(类似LSTM)Deterministic
Fh transition function : LSTM network
3. hidden canvas 隐画布:输入:LSTMfcallows for many different transformations, and it is here where generative(writing) attention is used.生成了(写)注意力
4. Condition使用observationfunction fo(c; θo)计算
All parameters of this generative model asθ = {θh, θc, θo}.
3.2.2. Free Energy ObjectiveObjective function for inference andparameter learning
Optimize this objective function for the
variationalparameters φ and the modelparameters θ, by
stochastic gradientdescent using a mini-batch of data.
As with other VAEs, we use a single sampleof the latent variables generated from qφ(z|x)when computing the Monte Carlogradient.
当计算蒙特卡洛梯度时,使用单个从qφ(z|x)分布生成的浅变量。
3.2.3. HIDDEN CANVAS FUNCTIONSCanvas transition function fc(ct1,ht;θc)更新hiddencanvas状态:
使用非线性变换fw转换当前隐状态ht,然后和已存在的canvas Ct-1融合。
Hidden canvas:隐画布,与原始图像拥有同样 ,多个通道。
更新hidden canvas的两种方法
1. Additive Canvas
在原画布上添加hidden state的转换fw(Ct-1,ht; θc)
2. Gated Recurrent Canvas
使用Convolutional gatedrecurrent unit(CGRU)卷积门循环单元,提供非线性递归更新机制,类似于convolutional LSTMSs
Functionfw(ht; θw) is a writing function that is used by the canvas function to transformthe LSTM hidden state into the coordinate system of the hidden canvas.
LSTM隐层状态——>隐画布的坐标系。
这个映射可以使全部/部分连接,本文使用writing or generative attentionfunction
Final phase of the generative processtransforms
Hidden canvas CT—fo(c; θo)—>似然函数的参数
output function fo(c; θo) : 1*1卷积实现,当隐画布hidden canvas有不同尺寸时,使用CNN.
Transform the LSTM hidden state into the coordinatesystem of the hidden canvas.
3.2.4. DEPENDENT POSTERIOR INFERENCE 依赖后验推断使用拥有自回归形式结构化的后验近似,i.e.q(zt|z<t,x).
Inference network实现这个分布。
Each step:
1. 使用非线性变换fr生成一个关于输入图像和隐状态t-1的低维表示rt。
Reading function(与writing attention function配对)。
Reading function:Input image to be transformed into a new coordinate space that allows for easierinference computations.
Be implemented as a fully- orlocally-connected network,
Better inferenceis obtained using a reading or recognitionattention.
进一步使用非线性函数将Fr的结果与先前状态ht-1融合生成K维对角高斯分布的均值μ和方差σ。