我们不推荐使用pickle或cPickle来保存Keras模型
你可以使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含:
使用keras.models.load_model(filepath)来重新实例化你的模型,如果文件中存储了训练配置的话,该函数还会同时完成模型的编译
例子:
from keras.models import load_model model.save('my_model.h5') # creates a HDF5 file 'my_model.h5' del model # deletes the existing model # returns a compiled model # identical to the previous one model = load_model('my_model.h5')如果你只是希望保存模型的结构,而不包含其权重或配置信息,可以使用:
# save as JSON json_string = model.to_json() # save as YAML yaml_string = model.to_yaml()这项操作将把模型序列化为json或yaml文件,这些文件对人而言也是友好的,如果需要的话你甚至可以手动打开这些文件并进行编辑。
当然,你也可以从保存好的json文件或yaml文件中载入模型:
# model reconstruction from JSON: from keras.models import model_from_json model = model_from_json(json_string) # model reconstruction from YAML model = model_from_yaml(yaml_string)如果需要保存模型的权重,可通过下面的代码利用HDF5进行保存。注意,在使用前需要确保你已安装了HDF5和其Python库h5py
model.save_weights('my_model_weights.h5')如果你需要在代码中初始化一个完全相同的模型,请使用:
model.load_weights('my_model_weights.h5')如果你需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,你可以通过层名字来加载模型:
model.load_weights('my_model_weights.h5', by_name=True)例如:
""" 假如原模型为: model = Sequential() model.add(Dense(2, input_dim=3,)) model.add(Dense(3,)) ... model.save_weights(fname) """ # new model model = Sequential() model.add(Dense(2, input_dim=3,)) # will be loaded model.add(Dense(10,)) # will not be loaded # load weights from first model; will only affect the first layer, dense_1. model.load_weights(fname, by_name=True)Tags:深度学习