canvas教程

Android硬件加速原理与实现简介

字号+ 作者:H5之家 来源:H5之家 2017-01-26 11:05 我要评论( )

在手机客户端尤其是Android应用的开发过程中,我们经常会接触到“硬件加速”这个词。由于操作系统对底层软硬件封装非常完善,上层软件开发者往往对硬件加速的底

在手机客户端尤其是Android应用的开发过程中,我们经常会接触到“硬件加速”这个词。由于操作系统对底层软硬件封装非常完善,上层软件开发者往往对硬件加速的底层原理了解很少,也不清楚了解底层原理的意义,因此常会有一些误解,如硬件加速是不是通过特殊算法实现页面渲染加速,或是通过硬件提高CPU/GPU运算速率实现渲染加速。

本文尝试从底层硬件原理,一直到上层代码实现,对硬件加速技术进行简单介绍,其中上层实现基于Android 6.0。

了解硬件加速对App开发的意义

对于App开发者,简单了解硬件加速原理及上层API实现,开发时就可以充分利用硬件加速提高页面的性能。以Android举例,实现一个圆角矩形按钮通常有两种方案:使用PNG图片;使用代码(XML/Java)实现。简单对比两种方案如下。

方案 原理 特点

使用PNG图片(BitmapDrawable) 解码PNG图片生成Bitmap,传到底层,由GPU渲染 图片解码消耗CPU运算资源,Bitmap占用内存大,绘制慢

使用XML或Java代码实现(ShapeDrawable) 直接将Shape信息传到底层,由GPU渲染 消耗CPU资源少,占用内存小,绘制快

页面渲染背景知识
  • 页面渲染时,被绘制的元素最终要转换成矩阵像素点(即多维数组形式,类似安卓中的Bitmap),才能被显示器显示。

  • 页面由各种基本元素组成,例如圆形、圆角矩形、线段、文字、矢量图(常用贝塞尔曲线组成)、Bitmap等。

  • 元素绘制时尤其是动画绘制过程中,经常涉及插值、缩放、旋转、透明度变化、动画过渡、毛玻璃模糊,甚至包括3D变换、物理运动(例如游戏中常见的抛物线运动)、多媒体文件解码(主要在桌面机中有应用,移动设备一般不用GPU做解码)等运算。

  • 绘制过程经常需要进行逻辑较简单、但数据量庞大的浮点运算。

  • CPU与GPU结构对比

    CPU(Central Processing Unit,中央处理器)是计算机设备核心器件,用于执行程序代码,软件开发者对此都很熟悉;GPU(Graphics Processing Unit,图形处理器)主要用于处理图形运算,通常所说“显卡”的核心部件就是GPU。

    下面是CPU和GPU的结构对比图。其中:

  • 从结构图可以看出,CPU的控制器较为复杂,而ALU数量较少。因此CPU擅长各种复杂的逻辑运算,但不擅长数学尤其是浮点运算。

  • 以8086为例,一百多条汇编指令大部分都是逻辑指令,数学计算相关的主要是16位加减乘除和移位运算。一次整型和逻辑运算一般需要1~3个机器周期,而浮点运算要转换成整数计算,一次运算可能消耗上百个机器周期。

  • 更简单的CPU甚至只有加法指令,减法用补码加法实现,乘法用累加实现,除法用减法循环实现。

  • 现代CPU一般都带有硬件浮点运算器(FPU),但主要适用于数据量不大的情况。

  • CPU是串行结构。以计算100个数字为例,对于CPU的一个核,每次只能计算两个数的和,结果逐步累加。

  • 和CPU不同的是,GPU就是为实现大量数学运算设计的。从结构图中可以看到,GPU的控制器比较简单,但包含了大量ALU。GPU中的ALU使用了并行设计,且具有较多浮点运算单元。

  • 硬件加速的主要原理,就是通过底层软件代码,将CPU不擅长的图形计算转换成GPU专用指令,由GPU完成。

  • 扩展:很多计算机中的GPU有自己独立的显存;没有独立显存则使用共享内存的形式,从内存中划分一块区域作为显存。显存可以保存GPU指令等信息。

    并行结构举例:级联加法器

    为了方便理解,这里先从底层电路结构的角度举一个例子。如下图为一个加法器,对应实际的数字电路结构。

  • A、B为输入,C为输出,且A、B、C均为总线,以32位CPU为例,则每根总线实际由32根导线组成,每根导线用不同的电压表示一个二进制的0或1。

  • Clock为时钟信号线,每个固定的时钟周期可向其输入一个特定的电压信号,每当一个时钟信号到来时,A和B的和就会输出到C。

  • 现在我们要计算8个整数的和。

    对于CPU这种串行结构,代码编写很简单,用for循环把所有数字逐个相加即可。串行结构只有一个加法器,需要7次求和运算;每次计算完部分和,还要将其再转移到加法器的输入端,做下一次计算。整个过程至少要消耗十几个机器周期。

    而对于并行结构,一种常见的设计是级联加法器,如下图,其中所有的clock连在一起。当需要相加的8个数据在输入端A1~B4准备好后,经过三个时钟周期,求和操作就完成了。如果数据量更大、级联的层级更大,则并行结构的优势更明显。

    由于电路的限制,不容易通过提高时钟频率、减小时钟周期的方式提高运算速度。并行结构通过增加电路规模、并行处理,来实现更快的运算。但并行结构不容易实现复杂逻辑,因为同时考虑多个支路的输出结果,并协调同步处理的过程很复杂(有点像多线程编程)。

    GPU并行计算举例

    假设我们有如下图像处理任务,给每个像素值加1。GPU并行计算的方式简单粗暴,在资源允许的情况下,可以为每个像素开一个GPU线程,由其进行加1操作。数学运算量越大,这种并行方式性能优势越明显。

    Android中的硬件加速

    在Android中,大多数应用的界面都是利用常规的View来构建的(除了游戏、视频、图像等应用可能直接使用OpenGL ES)。下面根据Android 6.0原生系统的Java层代码,对View的软件和硬件加速渲染做一些分析和对比。

    DisplayList

    DisplayList是一个基本绘制元素,包含元素原始属性(位置、尺寸、角度、透明度等),对应Canvas的drawXxx()方法(如下图)。

    信息传递流程:Canvas(Java API) —> OpenGL(C/C++ Lib) —> 驱动程序 —> GPU。

    在Android 4.1及以上版本,DisplayList支持属性,如果View的一些属性发生变化(比如Scale、Alpha、Translate),只需把属性更新给GPU,不需要生成新的DisplayList。

    RenderNode

    一个RenderNode包含若干个DisplayList,通常一个RenderNode对应一个View,包含View自身及其子View的所有DisplayList。

    Android绘制流程(Android 6.0)

    下面是安卓View完整的绘制流程图,主要通过阅读源码和调试得出,虚线箭头表示递归调用。

  • 从ViewRootImpl.performTraversals到PhoneWindow.DecroView.drawChild是每次遍历View树的固定流程,首先根据标志位判断是否需要重新布局并执行布局;然后进行Canvas的创建等操作开始绘制。

  •  

  • 1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

    相关文章
    • -_--___---_-

      -_--___---_-

      2017-01-26 11:03

    • Android学习札记二

      Android学习札记二

      2017-01-26 10:02

    • 双缓冲技术实现Android 画板应用

      双缓冲技术实现Android 画板应用

      2017-01-24 15:03

    • 试图清除 Android SurfaceView/Canvas 时闪烁

      试图清除 Android SurfaceView/Canvas 时闪烁

      2017-01-22 09:14

    网友点评
    .